Hepatic aquaporin 10 expression is downregulated by activated NFκB signalling in human obstructive cholestasis

Min Liao, Wenjing Yu, Qiaoling Xie, Liangjun Zhang, Qiong Pan, Nan Zhao, Ling Li, Ying Cheng, Xiaoxun Zhang, Dequn Sun, Jin Chai

PII: S2772-5723(22)00189-3
DOI: https://doi.org/10.1016/j.gastha.2022.11.002
Reference: GASTHA 211

To appear in: Gastro Hep Advances

Received Date: 28 July 2021
Revised Date: 20 August 2022
Accepted Date: 1 November 2022

Please cite this article as: Liao M, Yu W, Xie Q, Zhang L, Pan Q, Zhao N, Li L, Cheng Y, Zhang X, Sun D, Chai J, Hepatic aquaporin 10 expression is downregulated by activated NFκB signalling in human obstructive cholestasis, Gastro Hep Advances (2022), doi: https://doi.org/10.1016/j.gastha.2022.11.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier, Inc on behalf of the AGA Institute
Hepatic aquaporin 10 expression is downregulated by activated NFκB signalling in human obstructive cholestasis

Running title: Aquaporin 10 is downregulated in obstructive cholestasis

Min Liao1,2,3*, Wenjing Yu1,2,3,4*, Qiaoling Xie1,2,3*, Liangjun Zhang1,2,3*, Qiong Pan1,2,3, Nan Zhao1,2,3, Ling Li1,2,3, Ying Cheng1,2,3, Xiaoxun Zhang1,2,3, Dequn Sun5#, and Jin Chai1,2,3#

1Department of Gastroenterology, 2Institute of Digestive Diseases of PLA, 3Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China;

4Marine College, Shandong University, Weihai, 264209, China.

5School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.

*These authors contributed equally to this study and shared the first authorship.

#Correspondence author:

#Jin Chai, M.D., Ph.D. Professor of Gastroenterology and Hepatology
Chongqing University School of Medicine and Third Military Medical University (Army Medical University)
Department of Gastroenterology, Institute of Digestive Diseases of PLA, Center for Metabolic-Associated Fatty Liver Diseases and Center for Cholestatic Liver Diseases,
The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University) Chongqing, 400038, China
Tel: 86-23-68765331; Fax: 86-23-65410853
E-mail: jin.chai@cldcsw.org;

#Dequn Sun, Ph.D., School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China. E-mail: sundequn@hotmail.com

Disclosures:
The authors disclose no conflicts.

Writing assistance:
AJE helped with the grammar, sentence construction, word choice and syntax.
Source of funds: Self sponsored

Grants Support
This work was supported by National Natural Science Foundation of China (Grant Numbers:81900582 and 81922012); Third Military Medical University (Grant Numbers: XZ-2019-505-069).

Abbreviations
IF, immunofluorescence; IHC, immunohistochemistry; ChIP, chromatin Immunoprecipitation; AQP, aquaporin; NPA, asparagine-proline-alanine; deoxycholic acid dimethyl sulfoxide, DMSO; Cholic acid, CA; chenodeoxycholic acid, CDCA; glycocholate acid, GCA; Glycochenodeoxycholic Acid, GCDCA; taurocholic acid, TCA; Taurochenodeoxycholic acid, TCDCA; taurohyodeoxycholic acid, TDCA; BA, bile acid; TBA, total bile acids

Data transparency statement:
Data, analytic methods, and study materials will not be made available to other researchers.

Author contributions to this manuscript:
Jin Chai, Dequn Sun conceived and designed the experiments; Min Liao, Wenjing Yu, Qiaoling Xie, Liangjun Zhang, Ling Li, Ying Cheng, Qiong Pan, Nan Zhao, Xiaoxun Zhang, performed the experiments; Min Liao, Wenjing Yu, Qiong Pan, Liangjun Zhang and Ying Chen analyzed the data; Ling Li, Nan Zhao, contributed to reagents/materials/analysis tools; Min Liao, Wenjing Yu, Liangjun Zhang, Jin Chai wrote the paper.

Ethical Statement
The corresponding author, on behalf of all authors, jointly and severally, certifies that their institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and
Abstract

Background: Recent studies reported that the hepatic expression of AQP8 and AQP9 was downregulated in bile duct-ligated (BDL) rats and that overexpression of human AQP1 in the rat liver attenuated cholestasis. However, the hepatic expression of AQP10 and its regulatory mechanism in human cholestasis remain unclear.

Methods: Serum and liver samples were collected from 34 patients with obstructive cholestasis and from 12 control patients. Eight-week-old male C57BL/6J mice were intravenously injected with an adeno-associated virus 8 (AAV8) encoding *human AQP10* driven by a hepatocyte-specific *Alb* promoter (AAV8-*Alb* promoter-*hAQP10*) for functional studies. Constructs of the AQP10 promoter and PLC/PRF/5-ASBT cell lines were used for regulatory mechanism studies.

Results: AQP10 was significantly downregulated in patients with obstructive cholestasis and negatively associated with the serum levels of total bile acid (TBA). The hepatocyte-specific overexpression of *hAQP10* significantly attenuated the cholestatic liver injury and intrahepatic bile acids (BA) accumulation in BDL mice. Conjugated BAs, such as TCA and inflammatory factor TNFα, significantly repressed AQP10 expression. Furthermore, NFκB p65/p50 directly bound to the AQP10...
promotor and decreased its activity in PLC/RPF/5-ASBT cells and in the livers of patients with obstructive cholestasis. However, these changes were diminished by BAY 11-7082 (a specific inhibitor of NFκB signalling).

Conclusions: We are the first to report that AQP10 was significantly decreased in patients with obstructive cholestasis. AQP10 overexpression significantly attenuated cholestatic liver injury in BDL mice. Therefore, overexpression of hAQP10 in the liver may be a valuable strategy for cholestasis intervention.

Keywords: Aquaporin; Adeno-associated virus; Cholestasis; Nuclear factor-kappa B (NFκB).
Introduction

Impaired bile formation and secretion lead to cholestasis, which is characterized by excessive accumulation of bile acids (BAs) in the liver and serum [1]. Most studies have revealed adaptive responses to cholestasis, including repression of BA synthesis (e.g., CYP7A1 downregulation) and enhancement of BA efflux (e.g., MRP3, MRP4, OSTα/β, and OATP3A1 upregulation) [2,3]. Notably, water accounts for 95% of bile, and aquaporins (AQP)s are crucial for bile formation [4,5]. However, the functional and regulatory mechanisms of AQP(s) in human cholestasis are still largely unclear.

AQP water channels are small integral membrane proteins that are responsible for water transport in the epithelium [1]. At present, thirteen AQP isoforms (AQP0-AQP12) have been identified in humans [6,7,8], which are divided into three subfamilies, namely, the classical AQP(s), aquaglyceroporins and unorthodox AQP(s) [9]. AQP(s) are widely expressed in various tissues and have species and tissue specificity [9]. Moreover, AQP0, AQP8, and AQP9 are expressed in rat hepatocytes, while AQP1 is expressed in cholangiocytes, gallbladder epithelial cells, and peribiliary vascular endothelial cells [10,11,12]. Previous studies have shown that downregulated AQP1 and AQP8 expression is associated with the development of idiopathic intrahepatic and bile duct ligation (BDL)-induced extrahepatic cholestasis due to their impairment of bile flow [13,14]. In addition, AQP(s) were significantly decreased in the liver during sepsis [15]. Lehmann and colleagues injected lipopolysaccharide (LPS) into rats to study the function of AQP8 in LPS-induced cholestasis and found that
LPS induces the downregulation of AQP8 expression in hepatocytes and aggravates cholestasis [16]. Furthermore, downregulated AQP9 expression in the hepatocyte basolateral plasma membrane is related to extrahepatic cholestasis [17]. Previous studies have shown that AQP1, AQP3, AQP7, AQP8, AQP9, and AQP10 are expressed in the human liver [18, 19, 20]; AQP3 and AQP7 are involved in glycerol transport mediated by insulin [18]; AQP9 is involved in basolateral water transport in hepatocytes [17]; and AQP8 is closely related to canalicular membrane water permeability, while AQP1 is expressed in smaller proliferating bile ducts [21, 22]. However, the function of AQP10 in the liver has not been clarified. AQP10, an aquaglyceroporin, is expressed selectively in the human duodenum and jejunum and functions in the transport of water and glycerol [23], and interestingly, it has been reported that the expression of AQP10 is inhibited in differentiated human adipocytes, resulting in a 50% decrease in water permeability [24]. However, there is no information about its regulatory mechanism in obstructive cholestasis.

In the current study, we aimed to investigate the expression of hepatic AQP10 and its regulatory mechanism in human obstructive cholestasis. Our findings first revealed that AQP10 expression was significantly decreased in the livers of patients with obstructive cholestasis. The hepatocyte-specific overexpression of human AQP10 significantly attenuated cholestatic liver injury and intrahepatic BA accumulation in BDL mice. Overexpression of AQP10 in the liver may be a valuable strategy for intervention in cholestasis.
Material and methods

Ethical permission

This research was carried out according to the Declaration of Helsinki (as revised in 2013) published by the World Medical Association and was approved by the Institutional Ethics Review Board of the First Affiliated Hospital of Army Military Medical University (No.KY2021115). Written informed consent was obtained from all patients.

All animal experiments were performed according to the guidelines of the animal care and use committees at the medical research centre, and the study protocol was approved by the institutional Animal Use and Care Committee of Southwest Hospital affiliated with the Third Military Medical University (No.AMUWEC20201548).

Patients and liver sample collection

All liver tissues were collected from the Biobank of the First Affiliated Hospital of Army Military Medical University, a total of 34 surgical cholestatic liver samples were collected from patients with a pancreatic or periampullary malignancy, control liver samples were obtained from patients undergoing resection of liver metastases without cholestasis. Those patients did not receive ursodeoxycholic acid or any preoperative therapies. The liver samples were cut into small pieces and fixed in 4% paraformaldehyde or snap-frozen in liquid nitrogen. The demographic and clinical characteristics of these subjects are shown in Table S1.
Adenoviral vectors

AAV8 (Alb promoter -hAQP10 -T2A -Luciferase-40 PolyA) was purchased from Shanghai GeneChem. A schematic representation of the AAV8-hAQP10 vector genome, consisting of an expression cassette including a liver-specific albumin promoter, the hAQP10 coding sequence, T2A coding sequence, a luciferase protein coding sequence and SV40 PolyA flanked by adeno-associated virus inverted terminal repeats (ITRs), is shown in Fig. 4A.

Experimental animals

All mice were housed under a 12-h light/12-h dark cycle and had free access to water and food. Male C57BL/6J mice were purchased from GemPharmatech Co., Ltd. (Nanjing, China). Eight-week-old mice (C57BL/6J) were randomly divided into four groups for the bile duct ligation (BDL) experiments or the sham operation (sham-Luc (7 days, n = 5), sham-hAQP10 (7 days, n = 5), BDL-Luc (7 days, n = 5), BDL-hAQP10 (7 days, n = 5) and received a single administration of either AAV8-hAQP10 or AAV8-Luc via tail vein injection (1 × 10^{11} vector genomes (v.g.)). The animals were imaged at 2 weeks after the injection of AAV8, and after another 2 weeks, all mice were subjected to the BDL or sham operation for 7 days, surgery was performed under anesthesia with ketamine (Nimatek, 100 mg/kg) and xylazine (Sedamun, 10 mg/kg). The mice were fasted for 12 h before they were sacrificed. Serum was collected and stored at -80 °C, and liver tissues were frozen in liquid nitrogen. Serum and liver tissue biochemical assays were performed by the clinical
laboratory at Southwest Hospital affiliated with the Third Military Medical University (Chongqing, China). Successful adenovirus-mediated liver-specific expression of the AQP10 gene was analysed by qRT-PCR and immunohistochemistry (IHC) (Fig 3. C&D).

Adenoviral vectors

AAV8 (Alb promoter -hAQP10 -T2A -Luciferase-40 PolyA) was purchased from Shanghai GeneChem. A schematic representation of the AAV8-hAQP10 vector genome, consisting of an expression cassette including a liver-specific albumin promoter, the hAQP10 coding sequence, the thosea asigna virus 2A (T2A) coding sequence, a luciferase protein coding sequence and SV40 PolyA (Simian virus 40 PolyA, also called PolyA) flanked by adeno-associated virus inverted terminal repeats (ITRs), is shown in Fig. 4A.

Animal imaging

All liver tissues expressing the AQP10 gene expression sequence were detectable because of the AAV8-mediated expression of the luciferase gene. These mice were anaesthetized using 1.5% isoflurane and intraperitoneally injected with 10 μL of a D-luciferin stock solution (MCE, HY-12591B China) per gram of body weight. Photon emission from the ROI (entire animal) was measured using the device IVIS Imaging System 100 (Xenogen/Caliper Life Sciences, Alameda, CA).
Cell culture and treatment

Human hepatoma PLC/RPF/5-ASBT cells and PLC/RPF/5 cells were maintained in our laboratory [3]. The cells were cultured in DMEM (Gibco) containing 10% foetal bovine serum (FBS, complete medium, HyClone) at 37 °C and 5% CO₂. When the cells grew to 50% confluency, they were treated with vehicle dimethyl sulfoxide (DMSO), 100 μM cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholate acid (GCA), glycocholic acid (GCDCA), taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA), and taurohyodeoxycholic acid (TDCA, Sigma) and cultured in DMEM containing 1% charcoal stripped FBS (CS-FBS, Gibco) for 12 h. In some experiments, the cells were pretreated with 10 μM BAY 11-7082, an NFkB inhibitor, for 30 min.

Plasmid construction, transfection, and generation of stably transfected cell lines

PLC/RPF/5-ASBT and PLC/RPF/5 cells (10⁶ cells/well) were cultured in complete medium in 6-well plates overnight and transfected with 2 μg of control pcDNA3.1 or pcDNA3.1-AQP10, which we constructed previously. The cells were treated with G418 (750 μg/mL) and puromycin (2 μg/mL) for 21 days to establish cell lines stably expressing the target gene to thereby measure the concentration of bile acid.

AQP10 promoter luciferase reporter assays

The AQP10 proximal promoter (-1812 to +79) and its truncated forms (-1812, -1660, -877, -434 or -228 to +79) were amplified by PCR using specific primers (Figure 6)
and cloned into pGL3 to generate different AQP10 proximal promoter luciferase reporter constructs, followed by sequencing. PLC/RPF/5-ASBT cells (1×10^5 cells/well) were cultured in 48-well plates overnight and transfected with phRL-CMV (2.0 ng) and 100 ng of the individual luciferase reporter constructs together with pcDNA3.1-NF-κBp65 and pcDNA3.1-NF-κBp50 (kindly provided by Dr. Cai, School of Medicine, Yale University) or control pcDNA3.1 using Fugene HD transfection reagent (Promega, WI, USA). At 36 h post transfection, the cells were treated with DMSO or TCA (100 μM) for 24 h and lysed in lysis buffer. The luciferase activity of individual groups of cells was measured using the Dual Luciferase Assay kit (Promega) according to the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from tissues or cultured cells using TRIzol® reagent (Invitrogen, San Diego, CA) and reverse transcribed into first strand cDNA. The transcript levels of the target genes relative to that of the control GAPDH mRNA were determined by qRT-PCR using SYBR Premix Ex TaqTM Green II (Takara, Japan) and specific primers (Table S3) on a real-time PCR system (Bio-Rad). The data were normalized to the control and analysed by 2^-ΔΔCt using SDS software (Applied Biosystems).

Western blot analysis

The cell lysate samples were prepared as described previously [28] and resolved by
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by transfer onto polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with 5% fat-free dry milk in TBST and incubated with primary antibodies, as shown in Table S4. In particular, we used an affinity-purified rabbit polyclonal antibody against the human AQP10 protein (Alpha Diagnostic, San Antonio, USA; catalogue number AQP101-S/A; lot number 674142S). After being washed, the bound antibodies were detected with horseradish peroxidase (HRP)-conjugated secondary antibodies and visualized using enhanced chemiluminescent reagents. The levels of the target proteins relative to those of the control GAPDH were analysed by ImageJ software.

Chromatin immunoprecipitation assays
The potential binding sequences of NFκB in the chromosome were determined by chromatin immunoprecipitation (ChIP) assays performed using a commercial ChIP Assay Kit (Millipore, Bedford, MA). Briefly, PLC/PRF/5-ASBT cells were cultured, and upon reaching 80% confluence, they were pretreated with the vehicle DMSO or 10 µM BAY 11-7082 for 30 min. The cells were treated with vehicle or 100 µM TCA for 24 h. Soluble chromatin was prepared and then immunoprecipitated using antibodies against NFκB p65 (Table S4). The primer sequences and the sizes of the amplicons are listed in Table S6. In addition, human liver tissues from four controls and five patients with cholestatic disease were used for the preparation of soluble chromatin.
Determination of the bile acid concentrations in liver tissues and cells

Snap-frozen liver samples of equal weights were homogenized in 1 ml of precooled PBS, sonicated, and centrifuged. The bile acid contents in individual samples were determined by the clinical laboratory at Southwest Hospital affiliated with Army Medical University (Chongqing, China). The different groups of cells were treated with DMSO or 100 µM TCA and GCA for 24 h. After being washed, the cells were lysed with 500 µl of 1% Triton X-100 and sonicated, followed by centrifugation. After quantifying the protein concentrations, the levels of bile acid in individual samples were determined by the clinical laboratory.

Immunofluorescence and immunohistochemistry analysis

The snap-frozen liver tissue samples were fixed with 4% paraformaldehyde (PFA), dehydrated by 30% sucrose, and embedded in O.C. T compound. Crystal tissue sections were prepared, and the expression of AQP10 in the liver tissues and hepatoma cells was characterized by immunofluorescence (IF) and immunohistochemistry, as previously described [25], using the primary antibodies in Table S4.

Statistical analysis

All data are expressed as the mean ± standard deviation (SD). The independent data were analysed by Student’s t-test (two-tailed) using GraphPad Prism 6.0. An average
value of $p<0.05$ was considered statistically significant.

Results

Hepatic AQP10 expression was significantly reduced in patients with obstructive cholestasis

To determine the expression of AQP10 in the livers of patients with cholestasis, 34 surgically obtained cholestatic liver samples from patients with pancreatic or periampullary malignancy and 12 liver samples from patients with liver metastatic tumours were obtained. As expected, the liver function and bile acid metabolism were abnormal in patients with cholestatic livers (Table S1). The results indicated that the relative mRNA levels of AQP10 were notably reduced in cholestatic patients by 3.3-fold and that the protein expression in the cholestatic livers was 3.1-fold lower than that in control patients (Figs. 1A&B). Immunofluorescence and immunohistochemistry analysis indicated that the AQP10 expression was markedly reduced in the liver tissues of cholestatic patients (Fig. 1C&D).

Observance of a significant negative correlation between the serum levels of total bile acids (TBA) and hepatic mRNA AQP10 expression in obstructive cholestatic patients

To investigate the relationship between AQP10 and cholestasis, we performed a correlation analysis, revealing that the relative mRNA levels of AQP10 were
inversely correlated with the levels of serum total bile acids (TBA) ($r= -0.3648$, $P=0.0339$, Fig. 2F) but not with the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT), alkaline phosphatase (ALP) and total bilirubin (TBIL) in patients with cholestatic liver in this population. Therefore, the hepatic AQP10 expression was significantly reduced in obstructive cholestatic patients, and downregulated AQP10 expression was inversely correlated with abnormal bile acid metabolism in patients with cholestatic liver diseases.

Generation and validation of the hepatocyte-specific overexpression of human AQP10 in mice by the AAV8-Alb promoter-hAQP10 construct.

To further study the role of AQP10 in cholestasis, we purchased a vector from Shanghai GeneChem (AAV8-mediated hAQP10 gene), and a schematic representation of the vector expression cassette and the experimental design is shown in Fig. 3A. The adenovirus was injected into mice through the caudal vein at 8 weeks, and the amounts of the adenovirus-mediated genes delivered are detailed in the methods section. After 2 weeks, all mice were imaged in vivo (Fig. 3B); after another 2 weeks, the animals were subjected to the BDL or sham operation. As shown in Fig. 3C&D, qRT-PCR and immunohistochemistry (IHC) revealed that the AQP10 expression was notably increased in the sham-hAQP10 group and BDL-hAQP10 group.
Hepatocyte-specific overexpression of human AQP10 significantly reduced the cholestatic liver injury and/or intrahepatic BA accumulation in BDL mice and in TCA-treated hepatoma PLC/PRF/5-ASBT cells.

The total bile acid (TBA) levels in serum or liver tissue were markedly lower in the BDL-hAQP10 group than in the BDL-Luc group, while no obvious effects were observed in noncholestatic control mice (P<0.05; Fig. 4A&B). Solute membrane transporters are important pathways of bile transport; to our surprise, the levels of the liver transporters Bsep, Mdr1a, Mdr1b, Mdr2, Mrp2, Asbt, Oatp 1a, Ntcp, Mrp3, Oatp4, Oatp-D, Oatp-H, Mrp4, Ostβ and Ae2 mRNA levels did not differ between the BDL-Luc group and the BDL-hAQP10 group, the levels of the liver transporters Bsep, Mdr2, Mrp2, Asbt, Ntcp, Mrp3 protein levels also did not differ between the BDL-Luc group and the BDL-hAQP10 group (Fig. 4C&D). To determine the role of AQP10 in cholestasis, PLC/PRF/5 and PLC/PRF/5-ASBT cells were transfected with the pcDNA3-AQP10 plasmid or the control plasmid to establish stable PLC/PRF/5-Ctrl, PLC/PRF/5-ASBT, PLC/PRF/5-AQP10, and PLC/PRF/5-ASBT-AQP10 cells. AQP10 and ASBT expression was detected by Western blot (Fig. 4E). Treatment with DMSO or 100 mM CDCA did not alter the levels of bile acids in the different groups of cells (Fig. 4F). However, while basal levels of bile acids were detected in PLC/PRF/5-Ctrl and PLC/PRF/5-AQP10 cells, the levels of bile acids in PLC/PRF/5-ASBT-AQP10 cells were significantly lower than those in PLC/PRF/5-ASBT cells (P<0.05).

Together, our findings suggest that the overexpression of human AQP10 can attenuate
BA accumulation in hepatocytes.

Bile acids decreased the mRNA and protein expression of AQP10 in hepatoma PLC/PRF/5-ASBT cells in a time-dependent manner

Given the negative correlation between AQP10 and abnormal bile acid metabolism, we examined whether bile acids could modulate AQP10 expression in cholestatic hepatocytes. PLC/PRF/5-ASBT cells were treated with vehicle DMSO, CA, CDCA, GCA, GCDCA, TCA, TCDCA, or TDCA, and the relative expression levels of AQP10 were determined by qRT-PCR. Treatment with either CDCA, GCA, TCA, TCDCA, or TDCA significantly decreased the mRNA and protein levels of AQP10, while CA and GCDCA had no effect on these levels ($P<0.05$, Fig. 5A&B). Furthermore, treatment with TCA for varying amounts of time decreased the mRNA and protein expression of AQP10 in PLC/PRF/5-ASBT cells in a time-dependent manner (Fig. 5 C&D). Thus, our data provide evidence that conjugate bile acid can reduce the AQP10 expression in hepatocytes.

The transcription factor NFκB p65 directly binds to the AQP10 promoter and decreases its activity in PLC/PRF/5-ASBT cells and in the livers of patients with obstructive cholestasis

To elucidate the molecular mechanisms of AQP10 regulation during cholestasis, we first analysed the AQP10 promoter (1812 bp, http://jaspar.genereg.net) and identified numerous putative NFκB response elements (Supplementary Figures 2A).
To verify which response element(s) were functional, the AQP10 promoter and its truncates (-1812, -1660, -877, -434 and -228 to +79) were cloned into pGL3 to generate different luciferase reporter plasmids (Fig. 6A). The luciferase activities controlled by the -434/+79 and -228/+79 truncates were obviously lower than those controlled by the AQP10 promoter and other truncates in PLC/PRF/5-ASBT cells, illustrating that the -434 to -228 region of the promoter had vital NFκB response elements (Fig. 6B).

Second, treatment with TCA significantly decreased the AQP10 promoter -434/+79 truncate-controlled luciferase activity in PLC/PRF/5-ASBT cells. Furthermore, induction of NFκB p65/p50 overexpression significantly reduced the luciferase activity relative to that of the DMSO control. These results indicated that the key elements for effective NFκB p65/p50 binding were located in the AQP10 promoter between –434 and –228. Additional luciferase assays revealed that the induction of NFκB p65/p50 overexpression significantly decreased the AQP10-434/+79 promoter activity but not the mutant-controlled (site-directed mutation) luciferase activity in PLC/PRF/5-ASBT cells (Fig. 6C, supplementary Figures 2B). To determine whether transcription factors can downregulate AQP10 in cholestatic patients, their expression levels were detected by ChIP-qPCR. The ability of activated NFκB p65 to bind the AQP10 promoter in the -434 to -228 region was significantly increased in patients with cholestatic liver diseases compared with the control patients, and ChIP assays (semiquantitative PCR) further confirmed this result (Fig. 6D&E). However, there was no difference in the abilities of activated NFκB p65 to bind to the other tested
regions in the AQP10 promoter between the cholestatic patients and controls (supplementary Figures 2D). Therefore, these data clearly indicated that NFκB p65 directly inhibited the AQP10 expression in cholestatic livers.

The activation of NFκB signalling by bile acids and TNFα downregulated the AQP10 expression and the ability of p65 to bind the AQP10 promoter in PLC/RPF/5-ASBT cells

The activation of NFκB signalling is associated with the development of cholestasis in the liver [3]. TCA is a conjugated bile acid. To understand the molecular mechanisms by which TCA downregulates AQP10 expression, the effect of TCA (100 μM) on NFκB signalling in PLC/PRF/5-ASBT cells was assessed for varying amounts of time. We found that TCA increased the relative levels of NFκB p65 phosphorylation in PLC/PRF/5-ASBT cells (Fig. 7A). Treatment with TCA (100 μM) for 24 h significantly decreased the mRNA levels of AQP10 (Fig. 7B). Pretreatment with BAY 11-7082 (10 μM), an irreversible inhibitor of NFκB signalling, abrogated the inhibitory effect of TCA on the AQP10 expression in PLC/PRF/5-ASBT cells. Treatment with TNFα (50 ng/ml) in PLC/PRF/5-ASBT cells also decreased the expression of AQP10, and the trend of TNFα downregulating AQP10 expression was reversed by BAY 11-7082 (Fig. C&D). Moreover, as shown by ChIP assays, the TCA-induced ability of NFκB to bind the AQP10 promoter (NFκB ChIP1) was diminished in the presence of BAY 11–7082 (Fig. 7E&F). The TCA-induced ability
of NFκB p65 to bind the AQP10 promoter (NFκB p65 ChIP2 and NFκB p65 ChIP3) was not affected by BAY 11–7082 (Fig. 7E, supplementary Figures 2E).

These data indicated that the activation of NFκB signalling by bile acids and TNFα downregulated the AQP10 expression and the ability of p65 to bind the AQP10 promoter in PLC/RPF/5-ASBT cells.

Discussion

Here, we are the first to report that AQP10 was expressed in the human liver and hepatocytes and that its expression was significantly decreased in the livers of patients with obstructive cholestasis. Moreover, we also revealed the regulatory mechanism of AQP10 downregulation in human obstructive cholestasis. Interestingly, hepatocyte-specific overexpression of human AQP10 significantly attenuated cholestatic liver injury and intrahepatic BA accumulation in BDL mice. Therefore, overexpression of AQP10 in the liver may be a valuable strategy for intervention in obstructive cholestasis, while obstructive cholestasis may be very different from cholestasis of other aetiologies, and future research may benefit from examining this possibility in liver biopsies in those settings.

Cholestasis is characterized by the excessive accumulation of intrahepatic BAs [1]. Under cholestasis conditions, adaptive responses, including repression of BA synthesis (e.g., CYP7A1 downregulation) and enhancement of BA efflux (MRP3,
MRP4, OSTα/β, and OATP3A1 upregulation), are triggered to ameliorate cholestatic liver injury. It is well known that the transport of BAs is closely related to water transport and solute transport, and previous studies have reported that hepatic AQP9 facilitates basolateral water entry, AQP8 and AQP1 enhance solute-driven AQP-mediated biliary water secretion, the hepatic AQP8 and AQP9 expression levels are decreased in cholestatic rats, and overexpression of human AQP1 in rats attenuates cholestasis [13, 17, 22]. However, the expression of AQP10 in human liver and its functional role in cholestasis remain unclear. Herein, our results confirm the previously reported presence of AQP10 in the human liver (Fig. 1); in contrast, it is not expressed in rodent livers [26]. Furthermore, we are the first to report that hepatic AQP10 expression was significantly decreased and negatively correlated with serum total bile acid (TBA) levels in patients with obstructive cholestasis (Fig. 2F), indicating that AQP10 may be associated with BA elimination. A recent study demonstrated that the overexpression of human AQP1 improves bile salt secretion in oestrogen-induced cholestatic rats by increasing bile salt export pump (BSEP) transport activity [22]. In the present study, the hepatocyte-specific overexpression of human AQP10 in mice by AAV8-Alb promoter-hAQP10 infection did not alter the hepatic mRNA and protein expression levels of BA transporters such as BSEP, Mrp2, Mrp3, Mdr2 and Ostβ when compared to those of control BDL mice (Fig. 4C&D). Nevertheless, hAQP10 overexpression in hepatocytes significantly reduced BA accumulation in BDL mouse livers and taurocholic acid (TCA)-treated PLC/RPF/5-ASBT hepatoma cells (Fig. 4A&B&E&F). In addition, the serum levels of
biochemistry parameters in BDL mice showed that serum ALT, AST, TBIL and DBIL were significantly decreased in the AQP10 overexpression group. Therefore, these findings suggest that liver AQP10 targeted therapy can reduce BA accumulation and improve AQP10 liver function. The mechanism for reducing BA accumulation may be related to solute transporter activities; however, further investigation need to be carried out in the future.

AQPs, including AQP1, AQP8, and AQP9, play a crucial role in cholestasis [14, 27]. However, the regulatory mechanisms of these AQPs, especially AQP10, in human cholestasis are still unknown. Our previous study demonstrated that hepatic NFκB signalling is activated in human obstructive cholestasis [3]. Furthermore, elevated levels of serum TNFα and TBA were observed in patients with obstructive cholestasis [28, 29], and recombinant TNFα and conjugated BAs were shown to activate NFκB signalling [30, 31]. Similarly, we found that conjugated BAs, such as TCA, stimulated the phosphorylation of NFκB p65 in PLC/RPF/5-ASBT hepatoma cells (Fig. 7A&B). Further studies revealed that conjugated BAs such as TCA and recombinant TNFα significantly repressed AQP10 expression, and NFκB p65/p50 directly bound to the AQP10 promoter and decreased its activity in PLC/RPF/5-ASBT cells and human obstructive cholestatic livers (Fig. 7C&D&E&F). However, these alterations were abolished by BAY 11-7082, a specific inhibitor of NFκB signalling (Fig. 7C). Taken together, our findings demonstrated that NFκB signalling activated by TNFα and TBA represses the expression of AQP10 in hepatocytes.
Conclusion

In summary, we first reported that hepatic AQP10 expression was significantly decreased in patients with obstructive cholestasis and revealed its functional role and regulatory mechanism in human obstructive cholestasis. The hepatocyte-specific overexpression of human AQP10 significantly attenuated cholestatic liver injury and intrahepatic BA accumulation in BDL mice. Therefore, overexpression of AQP10 in the liver may be a valuable strategy for cholestasis intervention.

References

Figure legends

Fig.1 AQP10 expression was significantly reduced in the human obstructive cholestatic liver. (A) AQP10 mRNA transcripts in human livers (relative to the control group; n=12 for the control group, n=34 for the obstructive cholestatic group). *P<0.0001 vs controls. (B) Western blot analysis of the relative levels of AQP10 expression in human liver samples (C1-4: control patients; O1-O7: obstructive cholestasis patients). *P<0.0001 vs controls. (C) Immunofluorescence staining of the AQP10 protein (red) in liver samples from a control patient and a patient with obstructive cholestasis. (D) Immunohistochemistry analysis of AQP10 expression. Immunohistochemistry labelling of AQP10 in the liver of a control patient and a patient with obstructive cholestasis. AQP10 expression was reduced in the liver of the obstructive cholestasis patient.

Fig.2 Downregulated AQP expression is inversely correlated with abnormal bile metabolic parameters in patients with cholestatic diseases. AQP10 mRNA transcript levels were inversely correlated with the levels of serum TBA (r = -0.3648, p = 0.0339, n = 34), while no significant association was observed between the AQP10 mRNA transcript levels and the serum AST, ALT, ALP, GGT and TBIL levels.
Fig.3 **Design and in vitro validation of AAV8-mediated liver hAQP10 gene transfer.** (A) Schematic representation of the vector expression cassette and experimental design. (B) A representative image of AAV8-mediated hAQP10 gene transfer in mice. (C) AQP10 mRNA expression in AAV8-mediated livers (sham-Luc, n=5; sham-hAQP10, n=5; BDL-Luc, n=5; BDL-hAQP10, n=5). *P<0.05 vs. the sham-Luc group. #P<0.05 vs. sham-hAQP10. $P<0.05 vs. BDL-Luc. (D) Immunohistochemistry (IHC) labelling of hAQP10 in the livers of AAV8-mediated hAQP10 gene transfer mice. The hAQP10 expression was significantly increased in the sham-hAQP10 group and BDL-hAQP10 group.

Fig.4 **Hepatocyte-specific overexpression of human AQP10 significantly reduced the cholestatic liver injury and intrahepatic BA accumulation in BDL mice and TCA-treated hepatoma PLC/PRF/5-ASBT cells.** (A) Serum TBA levels in mice, $p<0.05 vs BDL-Luc. (B) Liver tissues of the same weight were collected for ultrasonication, and samples were analysed at the clinical laboratory of Southwest Hospital affiliated with Army Medical University, $p<0.05 vs BDL-Luc. (C) The mRNA expression of hepatic transporters. The decreased levels hepatic and serum bile acids were not due to hepatic transporters. *p<0.05 vs Sham-Luc, #p<0.05 vs Sham-hAQP10. (D) Representative Western blot images of Mrp2, Mdr2, Mrp3, Asbt, Ntcp, and Bsep. *p<0.05 vs Sham-Luc, #p<0.05 vs Sham-hAQP10. (E) qRT-PCR
analysis of the AQP10 and ASBT expression in PLC/PRF/5-Ctrl, PLC/PRF/5-ASBT, PLC/PRF/5-AQP10 and PLC/PRF/5-ASBT-AQP10 cells. (F) AQP10 overexpression reduces the accumulation of bile acids in human hepatoma cells. PLC/PRF/5-Ctrl, PLC/PRF/5-ASBT, PLC/PRF/5-AQP10 and PLC/PRF/5-ASBT-AQP10 cells were treated in triplicate with DMSO, control CDCA, or TCA for 12 h. *P<0.05 vs. the ASBT o/e.

Fig.5 Bile acids decreased the AQP10 mRNA and protein expression in PLC/PRF/5-ASBT cells in a time-dependent manner. (A&B) qRT-PCR and Western blot showed that the AQP10 expression was significantly decreased in PLC/PRF/5-ASBT cells treated with the conjugated bile acids CDCA, GCA, TCA, TCDCA, and TDCA. *P<0.05 vs. the control group. (C) Time-dependent inhibition of AQP10 mRNA transcription. (D) Time-dependent inhibition of AQP10 protein expression.

Fig.6 The transcription factor NFκB p65 directly binds to the AQP10 promotor and decreases its activity in human obstructive cholestatic livers. (A) Illustration of potential NFκB response regions in the AQP10 promotor. (B) Luciferase assay analysis of the binding of NFκB p65 to the AQP10 promotor and its truncates as well as the influence of TCA. PLC/PRF/5-ASBT cells were cotransfected with a control
plasmid and individual truncates together with or without plasmids encoding NFκB p65 and NFκB p50 expression and treated with DMSO or TCA for 24 h. The luciferase activities were measured. (C) NFκB p65/p50 overexpression and/or TCA treatment significantly decreased the AQP10 −434 to +79 truncate-controlled luciferase activity, but not the mutant-controlled luciferase activity, in PLC/PRF/5-ASBT cells. PLC/PRF/5-ASBT cells were cotransfected with the AQP10 promoter −434 or −228 truncate together with or without plasmids encoding NFκB p65 and NFκB p50 expression and treated with DMSO or TCA for 24 h. The luciferase activities in individual groups of cells were measured. *P<0.05 vs. the control group. (D) ChIP/qRT-PCR analysis of NFκB p65 binding to the AQP10 promoter using specific primers in human liver samples. *P<0.05 vs. the control patients. (E) ChIP-semiquantitative PCR analysis of NFκB p65 binding to the AQP10 promoter in the livers of obstructive cholestatic patients.

Fig.7 TCA downregulates the AQP10 expression in human hepatocytes by activating NFκB signalling. PLC5/PRF/5-ASBT cells were treated in triplicate with DMSO and 100 μM TCA for varying amounts of time, pretreated with BAY 11-7082 for 30 min and treated with DMSO, TCA or 50 ng/ml TNFα for 24 h. The relative levels of AQP10, NFκB p65 and NFκB p65 phosphorylation were determined by qRT-PCR or Western blot. (A) TCA activates NFκB signalling in PLC5/PRF/5-ASBT
cells. (B) The levels of AQP10 mRNA transcripts. (C&D) Western blot analysis of AQP10 expression and NFκB activation. The data are representative images or expressed as the mean ± SD of each group from three independent experiments. *P<0.05 vs. the DMSO group; #P<0.05 vs. the TCA group; $P<0.05 vs. the TNFα group. (E&F) Validation of the ability of NFκB p65 to bind to the AQP10 promoter in PLC5/PRF/5-ASBT cells by ChIP/RT-PCR analysis or ChIP semiquantitative PCR analysis. *P<0.05 vs. the DMSO group, #P<0.05 vs. the TCA group.

Table 1. Clinical features of bile duct-ligated mice
Table 1. Clinical features of bile duct-ligated mice

<table>
<thead>
<tr>
<th>Clinical Features</th>
<th>Sham-Luc (n=5)</th>
<th>Sham-hAQP10 (n=5)</th>
<th>BDL-Luc (n=5)</th>
<th>BDL-hAQP10 (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (IU/L)</td>
<td>32.97 ± 5.07</td>
<td>27.91 ± 8.60</td>
<td>428.40 ± 48.92*#</td>
<td>221.30 ± 37.41*#$</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>151.00 ± 27.86</td>
<td>129.90 ± 21.70</td>
<td>581.00 ± 73.33*#</td>
<td>349.3 ± 53.31*#$</td>
</tr>
<tr>
<td>ALP (IU/L)</td>
<td>99.03 ± 34.38</td>
<td>77.92 ± 9.10</td>
<td>474.90 ± 27.51*#</td>
<td>379.60 ± 37.63*#</td>
</tr>
<tr>
<td>TBIL (μmol/L)</td>
<td>0.80 ± 0.31</td>
<td>1.33 ± 0.18</td>
<td>336.10 ± 18.48*#</td>
<td>203.80 ± 50.53*#$</td>
</tr>
<tr>
<td>DBIL (μmol/L)</td>
<td>0.75 ± 0.34</td>
<td>1.69 ± 0.91</td>
<td>255.80 ± 17.25*#</td>
<td>149.50 ± 33.62 *#$</td>
</tr>
<tr>
<td>IBIL (μmol/L)</td>
<td>0.46 ± 0.22</td>
<td>0.42 ± 0.28</td>
<td>80.31 ± 18.81*#</td>
<td>54.29 ± 17.80*#</td>
</tr>
<tr>
<td>TBA (μmol/L)</td>
<td>0.93 ± 0.18</td>
<td>1.31 ± 0.30</td>
<td>368.60 ± 71.73*#</td>
<td>155.50 ± 48.90*#$</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>566.50 ± 46.10</td>
<td>382.00 ± 35.26</td>
<td>766.20 ± 71.00*#</td>
<td>576.00 ± 57.04*#</td>
</tr>
</tbody>
</table>

NOTE: The value are the means ± standard deviations.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acids; LDH, lactate dehydrogenase.

Sham-Luc, n=5; Sham-hAQP10, n=5; BDL-Luc, n=5; BDL-hAQP10, n=5.

* p<0.05 vs Sham-Luc
p<0.05 vs Sham-hAQP10
$ p<0.05 vs BDL-Luc
A

Relative mRNA levels

Control patients
Cholestatic patients

AQP10

B

Control patient
Cholestatic patient

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>O1</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>O5</th>
<th>O6</th>
<th>O7</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQP10</td>
<td>~35KD</td>
<td>~25KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>1±0.06</td>
<td>0.32±0.07a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36KD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

IF and IHC labeling of AQP10 in hepatocytes

D

Immunohistochemical

Control patient
Cholestatic patient
IgG